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ABSTRACT 

Space weather forecasting has become increasingly important over the past five decades as we have become more 
dependent on technology. Systems such as wireless communication, railway signaling, high voltage power grids and 
satellites can all be interrupted by solar activity events.   
The detection and tracking of sunspots as well as the prediction of solar eruptions forms a part of the attempt to predict 

space weather. To make predictions regarding the behaviour of a sunspot it is necessary to track and monitor its evolution 
over time.  
In this paper the use of Image Processing techniques to detect and track sunspots will be investigated.  
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1. INTRODUCTION 

Sunspots are dark areas located on the outermost layer of the Sun that emits the light we see from Earth (Curto 

et al., 2008). By studying the morphology of sunspots, it may be possible to forecast space weather events. 

Since the temperature of a sunspot is lower than the area surrounding the sunspot, it appears darker and 

therefore becomes visible. Small dark spots, called pores, form on the photosphere and either decay early in 

their lifecycle or develop into sunspots. As sunspots start to enlarge, small portions tend to break away from 

the original sunspot. When a sunspot becomes large enough it forms a double-ended group with opposite 

magnetic polarities on either side (Curto et al., 2008). 

Areas where sunspots are located on are known as active regions, which often lead to solar flares and 

coronal mass ejections (CMEs). When significant changes at the photospere of the Sun occur, it implies that 

the overlying magnetic field that is undergoing rearrangement must be strong. This is presumably in the low 
corona and the energy transported by magnetic disturbances propagating through the chromosphere to the 

photosphere may be an important component in the flare chromosphere energization (Fletcher et al., 2011) 

Solar flares occur after the magnetic field topology is rearranged and the magnetic field lines start reconnecting, 

resulting in solar flares (Guarcello et al., 2019). When these flares occur, large amounts of energy that was 

stored in the magnetic field is released. These energies are deposited both locally at the point of reconnection 

and onto the underlying dense chromosphere at the loop footprints of the field lines that the electron beams 

move along. Solar flares are often followed by another solar event known as a CME. When solar flares occur 

at active regions, forms of radiation, such as X-rays and radio waves take about eight minutes to reach the 

Earth from the Sun. Stray X-rays can disrupt the ionosphere enough to disrupt radio communications. They are 

not usually dangerous to the Earth, rather they act as indicators of potential coronal mass ejections (Guarcello 

et al., 2019). 

Coronal mass ejections are large eruptions of magnetic fields and plasma that are launched into the  
helio- sphere. These eruptions carry energized electrons which produce various sources of high-intensity 

plasma emissions (Carley et al., 2017). These storms can affect and damage not only satellites that provide 

wireless communication from space, but also ground based systems, such as railway signalling, high voltage 

power transmission grids and telecommunications cables (Colak and Qahwaji, 2007). These CMEs can take a 

few hours to a few days to reach the Earth (Colak and Qahwaji, 2007). 



Communication and power systems are critical for modern society to function optimally. However, these 

systems are often interrupted by natural events, which are beyond the control of humankind (Colak and 

Qahwaji, 2007). An example of these natural events is solar activity. Space weather research has taken a major 
role in the prediction of solar activity, especially since these events are the cause of the interruptions of wireless 

communications systems, railway signalling, high voltage power transmission grids, telecommunications 

cables and satellites (Colak and Qahwaji, 2007). Space weather refers to the time-variable conditions in the 

space environment that could in the worst-case scenario, endanger human life or health by affecting  

ground-based or space-borne technological systems, according to Koskinen et al. (2001). Being aware of and 

possibly avoiding the consequences of space weather events are the most important social and economic 

aspects of space weather. This can be done by efficient warning and detection systems that allow for preventive 

measures to be taken (Koskinen et al., 2001). Several attempts at systems that can detect sunspots exist (Colak 

and Qahwaji, 2007). In this section, the background on important concepts and existing systems will be 

discussed to give insight into this study. 

The primary aim of this study is to develop and test various image processing techniques for the detection 
and tracking of sunspots. The algorithms will be implemented in the programming language Python. Due to 

the slow rate which sunspots change and move, accuracy in each algorithm is the primary aim instead of how 

fast it can be executed. 

This paper is based on the Master’s dissertation of the first author (Du Toit, 2022). 

Previous work done on the detection and tracking of sunspots include a system that uses automated 

detection, characterization and tracking of sunspots on continuum images done in a study by Goel and Mathew 

(2014). A second approach is an automated sunspot detection using morphological reconstruction and adaptive 

region growing techniques done by Yu et al. (2014). The last is a system that automatically detect sunspot 

activities using an advanced detection mode done by Manish et al. (2014). Most previous work made use of 

different data sets (time intervals) and mainly focussed on determining the number of sunspots on each image, 

comparing this with available sunspot numbers.  

In this paper however, the first aim will be to identify the sunspots and verify the results visually. The main 
aim of the paper is the tracking of sunspots over a number of days. Once a given sunspot can be tracked its 

evolution over time can also be studied.  

The different methods investigated will be discussed in Section 2 and the results obtained with these 

methods will be elaborated on in Section 3. Finally conclusions and further work will be discussed in  

Section 4. 

2. METHOD 

The data set that was used consists of 20 different dates of images in 4096x4096 resolution with some taken 

on the same day, but a few hours apart. Four images were taken in 2011, three images in 2012, six images in 

2013, six images in 2014 and one image in 2015 that was used for implementing the algorithms on. The data 

set was downloaded from the National Aeronautics and Space Administration (NASA) website1. 

For the purpose of identifying sunspots, three object detection methods: Canny edge detection; template 

matching; and watershed segmentation were implemented and tested using images of the Sun. Finally, a novel 

object tracking algorithm for tracking sunspots was developed and tested on the same images. 

2.1 Canny Edge Detection 

A high-level overview of the steps for identifying sunspots by using the Canny algorithm is: 

1. Identification of the sunspots by using the Canny algorithm of the OpenCV library to detect all the 

edges of sunspots on the images; 

2. The merging of all the bounding boxes that were created from the detected edges. All the bounding 

boxes are tested to see if they are within a certain distance of pixels of each other. If the boxes are within the 

distance, a new large single bounding box is created that replaces all the small boxes. 

 
1 SDO — Solar Dynamics Observatory. https://sdo.gsfc.nasa.gov/ 



The new bounding box is created with the smallest top left coordinates and the largest bottom right coordinates. 

The top right corner is the ending x-coordinate and the starting y-coordinate. The bottom left corner is the 

starting x-coordinate but with the ending y-coordinate and the bottom right corner is the ending x and  
y-coordinate. By adding and comparing all the small boxes coordinates, the extreme coordinates for the corners 

are acquired and used for the new box; and 

3. At this stage, the bounding boxes are not yet drawn on the continuum image, and the process to merge 

the small boxes is repeated until there are no more small boxes close enough for merging into the new larger 

boxes. Then the final boxes are drawn from the new larger boxes. All the boxes are then drawn onto the 

continuum image and the resulting image is then saved. 

The process of the Canny edge detection method is illustrated in Figure 1 and the result of the method is 

shown in Figure 2. 

 

Figure 1. The process of the Canny algorithm 

 

Figure 2. The result of the Canny method 

2.2 Template Matching 

An overview of the steps for identifying sunspots by using template matching is: 

1. Identification of the sunspots by using the template matching algorithm of the OpenCV 

library to detect all the objects that resemble the templates of sunspots, on the images; 



2. The same process to merge the boxes that were used for the Canny algorithm is also used 

here. The bounding boxes that will be merged were created from the resembling templates of sunspots 

that were detected; and 
3. The bounding boxes are not yet drawn on the continuum image and step two is repeated until 

there are no more small boxes in merging distance, at which point the coordinates of the new larger 

boxes are also put through step two to get the final bounding boxes. All these boxes are then drawn 

on the image, which is subsequently stored to the file system. 

A number of sunspots were extracted from images and used as templates for the template matching 

algorithm. These templates are shown in Figure 3. 

  
 

 

Figure 3. Templates used for template matching 

2.3 Watershed 

An overview of the steps for identifying sunspots by using watershed is: 

1. The watershed algorithm uses the same implementation of the Canny algorithm for 

identifying sunspots; 

2. The same merging that was done for both Canny and template matching is reused in the 

watershed algorithm; 

3. Once the merging is done and the results of the Canny have been drawn on the image, the 

bounding boxes that were drawn are then extracted for watershed; 

4. A default image of  2019-10-15 at 00:29 UT that contains no sunspots is subtracted from the 

extracted images. First, the same area of an extracted image is extracted from the default image and both 

are then blurred with a median blur. Both of the two extracted areas are subtracted and the result is saved. 

This is done for every extracted sunspot; 
5. The subtracted image is then converted to binary with two different thresholds. The first 

threshold converts everything to white except that which is below the threshold; that is converted to black 

which is the umbra. The same principle is applied for identifying the penumbra where a threshold is applied 

to convert the penumbra area to black and the background to white; and 

6. The subtracted penumbra and umbra images are then applied with the watershed algorithm. 

The penumbra is drawn with a red outline and the umbra with a green outline. The results of both images 

are then written on the original extracted image as well as on the original image. An extraction showing 

the process on a single sunspot and is shown in Figure 4. 



 

Figure 4. The result of watershed segmentation on a solar image 

2.4 Algorithm for Tracking Sunspots 

An overview of the steps for tracking sunspots is: 

1. A starting image of the Sun is provided and sunspots are identified and bounding boxes are drawn 

using the steps discussed above; 

2. The watershed algorithm is based on the results from the Canny algorithm that was implemented in 

the previous step. Thus, it uses the same implementation of the Canny algorithm for identifying the sunspots 

and merging the bounding boxes; 

3. Assign an identification number to each of the bounding boxes; 

4. Identify the sunspots on a second image, which will be used to compare to the starting image; 

5. Calculate the time difference between images; 

6. Determine the expected position of each of the sunspots identified on the starting image using the time 

elapsed multiplied by a predetermined coefficient. The coefficient is determined based on the range of the 
bounding box the starting x-coordinate is in. 

7. Using this estimated position and a variance calculated using the time elapsed, find bounding boxes 

on the second image that are within range of estimated position +- variance. 

8. The final step is to test if there are any bounding boxes close to the calculated distance from the 

starting image on the ending image. Depending on the time difference, the variance is also calculated to be 

larger for large time differences and the variance is less for smaller time differences between the images. 

The process of tracking is illustrated in Figure 5 below. The starting image as well as the final image, 93 

hours later, both show the sunspot group. 
 



 

Figure 5. The result of the tracking algorithm. The top image that is the starting image for tracking with the date of  
2013-01-01 starting at 06:00 UT. The bottom image is on 2013-01-05 at 03:00 UT in the morning. The bottom image is 

the result of tracking predicted at 93 hours later 

3. RESULTS 

The algorithms presented were tested on a number of solar images. These results of these tests will now be 

discussed.  

Previous work done on sunspot detection was to produce a count of the number of sunspots on a given 

image. Furthermore,  different time periods are used in different studies making it difficult to compare results 

with other studies. Also, the main aim of this study is the tracking of sunspots over a number of days. To be 

able to do this the sunspots first need to be identified and the success of these processes are therefore confirmed 

by visually comparing results with the images. 

3.1 Canny Edge Detection 

The results from the Canny algorithm proved to be accurate, in terms of detecting almost every sunspot as well 

as detecting a lot of pores on the Sun. A sunspot is counted when it has a clear penumbra as well as umbra area 

and a pore is classified as only small dark spots. When tested with an image that contains no sunspots, this 

algorithm does not detect any false positives on the image. From all the test images, 146 out of 153 sunspots 

were detected resulting in an error percentage of 5%. In only one case a false positive was detected and the 

sunspots that were missed were all on the edge of the Sun. The Canny method can be described as effective 
and accurate in detecting sunspots away from the limb. 

 



3.2 Template Matching 

The results from the template matching algorithm proved to be accurate, in terms of detecting almost every 

sunspot as well as detecting a lot of pores on the. A sunspot is counted when it has a clear penumbra as well as 

umbra area and pores are classified as small dark spots. Although, when tested with an image that contains no 

sunspots, this algorithm detects false positives that are not desired. 

From all the test images, 144 out of 153 sunspots were detected resulting in an error percentage of 6%. In 

seven cases a false positive was detected and the sunspots that were missed were all on the edge of the Sun. 
The template matching method can be described as effective and accurate, but less accurate than the Canny 

method in detecting sunspots. The method was less sensitive in picking up small pores. 

3.3 Watershed 

For the purpose of being implemented on sunspots, the watershed algorithm was both sufficient and efficient. 
Additionally, it would be beneficial that more pores also be detected. This can be done by adjusting the 

threshold, but it was currently implemented in detecting the main focus of the images, which was the sunspots. 

The aim for this algorithm was satisfied with the results that were achieved. 

3.4 Tracking 

The tracking algorithm’s results are given in Figures 5 and 6. It can be derived from the results below that the 
prediction of where the sunspots will be in the next image is highly accurate. It is important to note that this 

algorithm is based on the Canny algorithm’s bounding boxes. Thus, if a sunspot is on the starting image but is 

not detected, and it is detected on the next image, it will be added as a new sunspot. Canny was chosen over 

template matching since it proved to more accurate and more stable in detecting true positives and not false 

positives such as template matching. 

The only complex areas in this algorithm would be that if two sunspots are included in a single bounding 

box and in the next image the bounding box is split into two separate bounding boxes with the new box having 

a higher y-axis than predicted for. A close-up result of the algorithm’s result is shown in Figure 2. An example 

of a single bounding box on the original image that is split into two bounding boxes on the next image, shows 

how the algorithm identifies both boxes with the same identification in Figure 6. 

 

 

Figure 6. The result of the tracking algorithm where a bounding box is split into two boxes. The top image that is the 
starting image for tracking with the date of 2013-01-01 starting at 06:00 UT. The bottom image is on the 2013-01-02  

at 21:00 UT in the evening. The bottom image is the result of tracking predicted at 39 hours later 



4. CONCLUSIONS AND FUTURE WORK 

The Canny algorithm proved to be the most accurate between it and template matching. Although, template 

matching drew the bounding boxes on separate sunspots where the Canny sometimes included both sunspots. 

The Canny algorithm also detected more pores than template matching making it much more sensitive to 

detecting not only the desired sunspots. When compared to using an image that contains no sunspots, the Canny 

method does not detect any false positives, whereas template matching detects false positives. The watershed 

algorithm performed efficient on large sunspots areas and the distinguishing between the umbra and penumbra 
was also efficient on the larger sunspots. Although, for better results between distinguishing the umbra and 

penumbra, pores and very small decaying sunspots that only has an umbra were not detected.  

Tracking between a starting image and any following image also proved to be very accurate in predicting 

the position of the sunspots. 

Future work that can be derived from this study includes: 

1. The comparison against the accuracy for machine learning techniques in terms of identifying sunspots. 

2. Investigation into algorithms that could help the prediction of CMEs could be incorporated or based 

on the results of this study. 
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