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ABSTRACT 

It has been observed that patterns and in particular first-class patterns can be used to enhance the type systems of procedural 
languages, especially dynamically typed procedural languages.  Here we describe some recent findings of our ongoing 
research on the impact of first-class patterns on the type system of our Asteroid programming language, a dynamically 

typed, multi-paradigm programming language that supports first-class patterns.  First, we show that first-class patterns 
allow us to specify subtypes of data types providing a light-weight mechanism for type checking function domains amongst 
other things.  Next, we introduce the idea of a pure constraint pattern which is a pattern that functions like a regular pattern 
but does not introduce any spurious bindings into the current scope.  This is particularly useful for preventing non-linearities 
in formal function arguments when using first-class patterns.  Finally, we demonstrate that first-class patterns can be used 
to define abstract base types enabling subtype polymorphism.  This is particularly powerful in object-based languages like 
Asteroid that lack inheritance and therefore cannot rely on that mechanism to provide subtype-supertype relationships 
between user defined types. 
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1. INTRODUCTION 

Pattern matching is a powerful programming paradigm which first appeared in applicative languages such as 

HOPE (Burstall, et al., 1980) in the 1970's and early 1980's to make data structure analysis and decomposition 

more declarative. It was adopted by functional languages such as Haskell (Peyton Jones, 2003) and ML (Milner 

et al., 1997) in the 1990's for similar reasons. First-class patterns were introduced into Haskell in the early 

2000’s (Tullsen, 2000), and were formally studied in the context of the lambda calculus later that decade (Jay 

& Kesner, D., 2009).  First-class patterns do not increase the computational power of a programming language, 
but they do increase its expressiveness similar to the way higher-order programming with first-class functions 

increases the expressiveness of a programming language allowing for brand new ways of solving problems. 

Here we explore some aspects of this by using first-class patterns to enhance type systems. Today, almost all 

modern programming languages such as Python, Rust, and Swift  incorporate some form of pattern matching.   

It has been observed that patterns and in particular first-class patterns can be used to enhance the type 

systems of procedural languages, especially dynamically typed procedural languages such as Python and 

JavaScript, e.g. (Bloom & Hirzel, 2012; Kohn et al., 2020).  Here we describe some recent findings of our 

ongoing research on the impact of first-class patterns on the type system of our Asteroid programming language 

(https://asteroid-lang.org), a dynamically typed, multi-paradigm programming language that supports  

first-class patterns.  Our notion of first-class patterns as types is related to the ideas of first-class dynamic types 

developed in (Homer et al., 2019).  
In this paper we show three applications of first-class patterns as types.  First, we show that first-class 

patterns allow us to specify subtypes of data types providing a light-weight mechanism for type checking 

function domains amongst other things.  Next, patterns can always be thought of as constraints in the sense 

that some functionality in a program is only invoked when a particular pattern is matched.  This was precisely 

the idea behind the original design of patterns in functional programming languages.  However, pattern 

matching, especially conditional pattern matching always introduces variable bindings into the current scope 



which might be undesirable due to name pollution of the current scope. Here we introduce our concept of “pure 

constraint pattern” where patterns behave like regular patterns but do not introduce variable bindings into the 

current scope. Finally, we demonstrate that first-class patterns can be used to define abstract base types (in the 
sense of abstract base classes) for both built-in as well as user defined types enabling subtype polymorphism.  

This is particularly powerful in object-based languages like Asteroid that lack inheritance and therefore cannot 

rely on that mechanism to provide subtype-supertype relationships between user defined types. 

In terms of contributions, besides providing an implementation of these concepts in a working programming 

language, our ideas of pure constraint pattern and patterns as abstract base types seem to be novel.  

2. FIRST-CLASS PATTERNS IN ASTEROID 

In Asteroid, first-class patterns are introduced with the keyword ‘pattern’ and patterns themselves are  

first-class values that we can store in variables amongst other things and then reference them when we want to 

use them.  Like so, 

let p = pattern (x,y). 
let *p = (1,2). 

The first let statement assigns a pattern value to the variable p and on the left side of the second let statement 

we dereference the pattern stored in variable p and use it to match against the term (1,2) on the right side. The 

match introduces the bindings x → 1 and y → 2 into the current scope. 

3. DEFINING SUBTYPES WITH PATTERNS 

First-class patterns can be used to define subtypes of existing types in a program in a lightweight, dynamic 

fashion.  For example, in Asteroid we can use a first-class pattern to define the natural numbers as a subtype 

of the integers as follows, 

let Nat = pattern (x:%integer) if x >= 0. 

The let statement defines a pattern Nat that, given a value x, checks if that value is of type integer and if its 

value is non-negative. We can now use this new pattern to restrict the values that can be assigned to a variable 

much like a type declaration would, 

let v:*Nat = some_value. 

This let statement will only succeed if the variable some_value has a value that is compatible with the 

pattern Nat. If the value is compatible with the pattern, then an appropriate binding of the variable v is inserted 

into the current scope.  We can combine structural pattern matching and patterns that define data types to type 

check the domain of functions.  Consider the factorial, which is only defined on non-negative integers, 

-- define our subtypes of the integers as patterns 
let Pos_Int = pattern (x:%integer) if x > 0. 
let Neg_Int = pattern (x:%integer) if x < 0. 
 
-- define function using structural decomposition on integers 
function fact 
    with 0 do 
        return 1 
    with n:*Pos_Int do             
        return n * fact (n-1). 
    with n:*Neg_Int do             
        throw Error("undefined for "+n). 
    end 

Here we have a structural decomposition with three cases.  The first case matches the constant 0 and returns 

the value 1. The second case matches the positive integers and performs the recursive factorial computation. 

Finally, the third case matches the negative integers and raises an exception since factorial is not defined over 

negative values.  Notice that the first-class patterns in the latter two cases act like data types restricting the 



kinds of values that can be assigned to the formal argument n. The structural decomposition given here is not 

unlike the kind of structural decomposition one would see in functional languages with one major difference: 

here the patterns are values! 

4. PURE CONSTRAINT PATTERNS 

Patterns can always be thought of as constraints in the sense that some functionality in a program is only 

invoked when a particular pattern is matched.  However, pattern matching, especially conditional pattern 

matching usually introduces variable bindings into the current scope which might be undesirable. Consider the 
code snippet based on our earlier pattern, 

let Nat = pattern (x:%integer) if x >= 0. 
let v:*Nat = 1. 

When these two statements are executed, they will produce two bindings in the current scope: v → 1 and  

x → 1. The former is an intended binding due to the second let statement where we explicitly assign the value 

1 to v. The latter is a spurious binding which is a side effect from evaluating the first-class pattern as part of 

the assignment in the second statement.  Besides cluttering the name space these kinds of spurious bindings 

can be harmful because they might mask critical variables that are part of the core computation. 

To prevent these spurious bindings Asteroid allows the user to turn any pattern into a “pure constraint 

pattern,” that is, a pattern that does not introduce spurious bindings into the current scope.  Pure constraint 

patterns are indicated with the ‘%[…]%’ brackets.  For instance, turning our Nat pattern into a pure constraint 

pattern gives us the program snippet, 

let Nat = pattern %[(x:%integer) if x >= 0]%. 
let v:*Nat = 1. 

which will only produce a single binding in the current scope: v → 1.  The evaluation of the variable x is now 

local to the pattern and that binding is not introduced into the current scope. One of the main applications of 

pure constraint patterns is the prevention of non-linear patterns in formal arguments of functions when 

employing first-class patterns.  The following function uses the pure constraint pattern Nat we introduced 

above, 

let Nat = pattern %[(x:%integer) if x >= 0]%. 

function nat_add  
    with (a:*Nat, b:*Nat) do 
        return a+b. 
    end 

This function accepts two natural numbers and returns their sum.  If we hadn’t written the Nat pattern as a 
pure constraint pattern, then its repeated use in the formal argument of the function would introduce a non-

linearity: the repeated instantiation of x in the argument pattern. Asteroid does not support non-linear patterns 

and therefore the program would be rejected.  Turns out that even if Asteroid supported non-linear patterns, 

this program would not work due to the fact that non-linear patterns express constraints on the values bound to 

the repeated variables – in this case all repeated instances of x need to be bound to exactly the same value 

which means that nat_add would be limited to computations involving pairs such as (1,1), (2,2), etc. 

5. DEFINING ABSTRACT BASE TYPES AS PATTERNS 

An interesting application of first-class patterns is the definition of abstract base types enabling subtype 

polymorphism. The following Asteroid program demonstrates that,  

load system io. 
 
structure Circle with -- define the circle shape 
 
   data radius. 



 
   function print_shape 
      with none do 
         io @println ("circle: "+this @radius) 
      end 
end 
 
structure Rectangle with -- define the rectangle shape 
 
   data a. 
   data b 
 
   function print_shape 
      with none do 
         io @println ("rectangle: "+this @a+","+this @b). 
      end 
end 
 
-- define abstract base type Shape with Circle and Rectangle as subtypes 
let Shape = pattern %[x if (x is %Circle) or (x is %Rectangle)]%.  
 
-- define function in terms of the abstract base type Shape 
-- the argument of the function is restricted to values described by the pattern Shape 
function print_any  
   with s:*Shape do 
      s @print_shape(). 
   end 
 
-- the function print_any is subtype polymorphic 
print_any(Circle(10)). 
print_any(Rectangle(5,20)). 

The program defines two shapes, Circle and Rectangle, together with some properties and a member 

function called print_shape, The member function does nothing else than write out  what kind of shape object 

it belongs to and what the properties of this shape object are. Next, we define the abstract base type Shape as 

a first-class pattern.  It is a pure constraint pattern that tests whether a given object is either a Circle or a 

Rectangle.  In effect, this makes Circle and Rectangle subtypes of Shape.  We then define a function called 

print_any whose argument is constrained to the abstract base type. If the passed-in object is of the correct type, 
then the function will call the member function print_shape on that object.  If the passed in object does not 

belong to the Shape type hierarchy, then the program will flag an error. The last two lines of the program 

demonstrate that the print_any function is subtype polymorphic and will generate the following output, 

circle: 10 
rectangle: 5,20 

We say that the pattern Shape represents an abstract type in that it functions as a type, but you are not able 

to instantiate any objects based on that type. 

6. CONCLUSIONS AND FURTHER WORK 

Here we provided a snapshot of ongoing research in the context of first-class patterns viewed as extensions to 

the type system of Asteroid.  First, we showed that first-class patterns allow us to specify subtypes of data 

types. Next, we introduced the idea of pure constraint patterns which are patterns that function like regular 

patterns but do not introduce any spurious bindings into the current scope.  Finally, we demonstrated that  

first-class patterns can be used to define abstract base types enabling subtype polymorphism. 

One issue that we are concerned with when using first-class patterns is the loss of transparency during 
pattern matching.  Consider pattern matching without the use of first-class patterns, 

let (x,y) = (1,2). 

It is clear that the value on the right is matched against the structure on the left with variable bindings x → 

1 and y → 2. Now, if we replace the pattern with a first-class pattern the code becomes, 



let p = pattern (x,y). 
let *p = (1,2). 

The second line is again a pattern match statement that matches the value on the right to the structure of the 

pattern. However, the binding of the variables is now somewhat obscured.  In order to restore some of the 

declarative properties of pattern matching we propose the following, 

let p = pattern %[(x,y)]%. 
let *p bind [x,y] = (1,2). 

Here the bind operator makes it explicit that pattern matching introduces bindings for the variables x and y 

in the current scope. The bind operator also allows you to rename bindings on the fly which is useful when a 

first-class pattern appears multiple times in a match statement, 

let p = pattern %[(x,y)]%. 
let (*p bind [x as a, y as b], *p bind [x as c, y as d]) = ((1,2), (3,4)). 

The pattern on the left of the second line describes a pair of pairs and introduces bindings for variables a, 

b, c, and d. Of course, in this setting the mechanisms seems to be overkill because the patterns involved are so 

simple but keep in mind that first-class patterns can become complex as we demonstrated above with the idea 

of describing an abstract base type using a first-class pattern. 
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